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Direct Measurement of the Transmission Matrix of a Mesoscopic Conductor
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We have developed an experimental approach which permits evaluation of the entire transmission ma-
trix of a mesoscopic conductor. Results are presented from two new investigations enabled by this tech-
nique: (a) We study ballistic multiprobe conductors in the limit of weak probe coupling, and (b) we im-
age modal features in the distribution function of electrons emerging from a quantum point contact.

PACS numbers: 72.10.Bg, 73.50.Jt

In the mesoscopic regime, electrical conduction in-
volves only a few scatterers and simplifies to become an
archetypal quantum mechanical scattering problem [1].
Current incident upon a scatterer can be viewed as a su-
perposition of partial waves. These evolve into outgoing
waves according to a matrix of transmission coefficients,
T, determined by the scattering potential itself.

Transport experiments on microstructures are typically
executed in a multiprobe configuration. For these,
Biittiker [2] has provided a formal link between the quan-
tum transmission picture [1] and measurable, macroscop-
ic resistances. In his model electron reservoirs, having
chemical potentials u;, separately feed the eigenstates of
quasi-one-dimensional (1D) /eads. These leads converge
and are coupled at a “‘junction’ region whose scattering
matrix subsumes the entire physics of the conductor. The
elements of T, the transmission coefficients Tj;, are fun-
damental to the theory; from them complicated expres-
sions for the sample’s resistance are derived. In experi-
ments, however, resistances are most directly obtained
but provide little insight into the properties of T. Our
study is motivated by the desire for a more direct ap-
proach.

A multiprobe ballistic conductor, such as illustrated in
Fig. 1, constitutes a simple, almost literal realization of
Biittiker’s model. Wide two-dimensional (2D) regions
form reservoirs which connect to short, narrow leads. In
these leads current is carried essentially without scatter-
ing by electrons occupying only the lowest few transverse
modes. The “scatterer” is the electrostatic potential in
the locale of the junction region where the leads converge.
Its geometric profile determines how incoming electrons
are ultimately converted to outgoing flux in other leads.

Biittiker’s model describes the linear response of a mul-
tiprobe conductor as

-
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where i and j are indices labeling the leads. In steady
state, chemical potentials pu; (and, thus, voltages, V;
=pu,/e) develop at the reservoirs in response to the im-
posed currents I; [3]. The transmission coefficient Tj;
represents the rotal probability of transmission from lead
j— i for states at the Fermi energy, and is given by a
sum over all occupied modes (indices k,/) in both leads:
Tij =Zk/|t,~,-‘k/| 2. N, is the number of propagating modes;
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N;=2;T;. Unlike the transmission probabilities,
[t;; k1]?, the coefficients T;; can exceed unity: T
€ [0,V;]. By external connections, reservoirs are gen-
erally forced to serve as either current (/) or voltage (V)
“contacts.” In conjunction with Eq. (1), this yields com-
plicated four-probe resistances of general form Ry mun
=h(Tpsk Tt — Tt Tox )/2¢ 2D, where D is any cofactor of
the matrix defined by Eq. (1) [2]. Here, indices reflect
current flow from reservoirs k— /, yielding a potential
drop from m to n.

Viewed from the perspective of Eq. (1), conventional
resistance measurements implicitly involve the imposition
of boundary conditions upon the currents I;. If, instead,
we fix the chemical potentials, Eq. (1) is immediately
simplified. Specifically, if we source a current I, into
reservoir 1 while equalizing u; at the other reservoirs by
an ideal short-circuit connection, pu; =p3=u4=0, Eq. (1)

FIG. 1.

Configuration for the T-measurement technique.
Four long gate electrodes at the surface of a 2DEG heterojunc-
tion (light shading) electrostatically isolate four rectangular 2D
reservoirs. From these, narrower channels lead to a central
junction region. Arrows show the direction of current flow for
B directed upward. Assignment of current (light shading) and
voltage (dark shading) contacts depends upon field orientation.
For clarity, external connections are shown only for reservoirs 1
and 3. Left (right) insets: Electron micrograph of open
(pinched) junction regions. Gates separated by 400 nm define
the leads. Weak coupling is obtained in pinched cross junctions
by 150-nm-wide constrictions formed between two 50-nm-wide
gate fingers.
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then reduces to (h/2e), I I; I4) = “N|([l| 00
0)+(u; 00 0)T. Under these conditions the off-diagonal
T;; become directly proportional to the currents,
Ti1=(h/2e)1;/u,, while T\ —N,=(h/2e)I,/u,. Other
columns of T (i=1) are obtained by changing the source
lead and following the same procedure.

Practically, of course, real short circuits between the
reservoirs will have finite resistance. The resulting path-
specific potential drops render external short circuits
ineffective at equalizing the y; which are internal to the
sample. We circumvent this difficulty by including a
separate / contact and V contact at each reservoir [4],
and by introducing external, variable terminating im-
pedances between each (sink) I contact and “ground”
(Fig. 1). This enables us to simultaneously monitor all
the y; in the presence of current flow and null differences
between them by iterative adjustment of the terminating
impedances [5,6]. In experiments, we study the evolution
of T in response to swept external “fields” (e.g., magnetic
field, gate bias, temperature). In this situation the u;
must be equalized dynamically [7]. In practice we find
self-consistent adjustment of terminating impedances less
convenient than an alternate procedure employing static
terminations. This involves building a set of linear equa-
tions through successive measurements (sweeps) which
we ultimately solve to obtain T [6].

The experiments are carried out using four-probe sam-
ples specifically designed for these measurements [6];
these require eight contacts (Fig. 1). Measurements
reported here are carried out at ~2 K using a 10-nA
drive current. Our approach provides a set of transmis-
sion coefficients satisfying the reciprocity relation [2],
T;;(B) =T;;(—B), to within the accuracy of the mea-
surements (typically a few percent). Also, we verify that
*“reconstituted” resistances, formed using measured T;; in
expressions for Ry .. from Eq. (1), are consistent with
direct resistance measurements [Figs. 2(c),2(e)].

We first apply this technique to compare transport in
the complementary limits of weak and strong probe cou-
pling. The “open” cross junction (Fig. 1, left inset)
exemplifies strong coupling; at the junction no geometri-
cal distinction exists between ‘“voltage” and ‘“current”
probes. The opposite limit requires voltage probes de-
coupled from the main current path, i.e., accepting
infinitesimal transmission ¢ compared to that along the
main conductor, T [8]. This limit, /7T <1, is envisioned
as enabling noninvasive measurement of the local chemi-
cal potential and, thereby, the intrinsic transport proper-
ties of quasi-1D wires [8-10]. We achieve weak coupling
in “pinched” cross junctions (Fig. 1), utilizing quantum
point contacts (QPC’s) to separate probes from the main
conductor.

We summarize our studies by a representative set of
results from a pinched cross junction in Fig. 2. In panels
(a)-(e), we display measurements obtained at three gate
voltages (labeled a,b,c). At these biases transmission
through the QPC’s is small, 1 ~0.5, 1.5, and 2.5, respec-
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FIG. 2. Data from a pinched cross junction at three gate
voltages labeled a, b, and ¢, at which Vg~ —0.90, —0.84, and
—0.76 V, respectively. The corresponding quantized conduc-
tance through the constrictions, as shown in panel (e) (inset),
indicate transmission of ~0.5, 1.5, and 2.5, respectively.
(a),(b) “Turning coefficients,” Tg and T, into the right and
left probes. Because of the device symmetry, Tg=T1(B)
~T43(B) and T =Ts(B)~Txu(B). (c) Hall resistance,
Ru =R\3,24(B), reconstituted from measured 7;; (solid curves).
Also shown is Ry measured conventionally at bias, ¢ (dashed).
Curves for a and ¢ are offset by +0.1 and —0.1, respectively.
Inset: A trajectory causing a peak in Tg at negative B. (d)
Forward transmission coefficient, Tr=T4(B), for electrons
propagating through both constrictions as depicted in Fig. 3 (in-
set). (e) Bend resistance, Rp, =Ri243(B) reconstituted from
measured Tj;. Also shown is Rp directly measured at bias ¢
(dashed). Curves for a and c are offset by 0.05 and —0.05, re-
spectively.

tively [Fig. 2(e), inset], while transmission along the
main conductor is larger, T~7, 8, and 10. Bias a pro-
vides the weakest coupling: /7T ~0.07.

We first discuss the “turning coefficients,” Tx and T,
for electrons injected into a pinched cross junction and
collected into weakly coupled right and left leads. With
sufficient magnetic field (normal to the 2D plane) the
Lorentz force directs most flux into one of the side leads
[Figs. 2(a) and 2(b)]. However, additional features ap-
pear in the other lead at fields where little flux should be
collected. Most prominent are the peaks in T (and T)
at B= —0.2 T (+0.2 T). Open cross junctions exhibit
similar behavior [6]. As a result, the (reconstituted) Hall
resistance Ry is first seen to quench [11] then reverse
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sign [12] as transmission into the probes is reduced
[biases ¢ — a, Fig. 2(c)]. Note that only for bias ¢ can
Ry be directly measured [Fig. 2(c)]; for biases a and b
weak coupling precludes resistance measurements, which
utilize voltage probes [13].

We ascribe these features to electron flux specularly
reflected from the junction boundary into the opposite
probe [Fig. 2(c), inset]l. Of mechanisms proposed to ex-
plain the Ry anomaly in microjunctions [14] only this
“rebound” effect, first inferred from resistance measure-
ments [12], appears to be consistent with the structure we
observe in T, and Tg for both pinched and open cross
junctions. Most surprising is that this effect grows as the
probes become decoupled (Fig. 3, curve ¢). Presumably,
if these phenomena stem from junction scattering they
should instead vanish in this limit. Calculations using
idealized potentials to model weakly coupled probes
confirm this expectation [9,10]. However, in our data,
these and other signatures of junction scattering persist
even in the limit of weak coupling [15]. Because the po-
tentials which can be imposed upon a 2DEG are “soft”
(i.e., spatially smoothed), even in this limit the main con-
ductor is evidently perturbed by the proximity of a probe.

Our second application elucidates new details of trans-
port in a QPC. The pinched cross junctions (Fig. 1) con-
stitute a collinear pair of QPC’s embedded within a four-
probe geometry equipped for 7;; measurement. Electron
beam collimation by a QPC [16] has been demonstrated
using a series arrangement of constrictions [17]. Our ap-
proach unveils new features when the emitted flux is
small. Figure 2(d) shows T, the forward transmission
coeflicient for electrons propagating through both QPC’s,
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FIG. 3. Angular profile of the “beam” emerging from one
constriction at biases a, b, and ¢. Tr is shown as a function of
angle of emission. At these biases the separation between
points contacts, d, are ~210, —220, and ~270 nm, respective-
ly. The corresponding densities n, within the junction are
(~1.8, ~2.0, and ~2.2)x 10" cm 2, respectively. Right in-
set: Schematic representation of the semiclassical trajectory
determining Tr. Left inset: Polar representation of the emerg-
ing “beam” for biases, a,b,c, employing a logarithmic radial
coordinate.
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i.e., from “injector” to “collector.” Upon application of
finite B, the emerging “beam” is deflected from the col-
lector and, thus, T falls. For open cross junctions this
occurs monotonically, but in pinched cross junctions we
find a nonmonotonic decay. New features emerge, offset
from the maximum at B=0. However, little or no corre-
sponding structure is resolved in the bend resistance [18]
Rp when obtained by direct four-probe measurement
[Fig. 2(e), trace cl, as utilized in Ref. [17].

The B dependence of Tr allows a sensitive momentum
spectroscopy. We deduce the angular profile of the in-
jected beam assuming classical propagation between the
QPC’s [17], and approximation valid at T~2 K where
significant phase averaging occurs. Assuming point col-
lection, electrons emitted at angle 6 are collected when
resind=d/2. Here r.=(h/eB)(n,/27)'"? is the cyclotron
radius and d is the distance between constrictions. We
obtain n; from the quantum Hall effect, where d is ex-
tracted from the quantized conductance along the main
channel. Figure 3 shows the profile of the collected
beam, Tr(6) [19].

Although propagation within the junction is essentially
classical in these experiments, transport at the QPC’s is
not. We constrict them to the point where, at most, only
a few modes propagate. In this quantum regime side
lobes appear in the emerging beam (Fig. 3, inset). This
structure cannot be attributed to diffraction; calculated
secondary diffraction maxima are several orders of mag-
nitude smaller in intensity than the central beam [6].
Features of this magnitude can result from injection of a
multimode distribution into a semi-infinite 2D region.
Especially striking, however, is that the data show side
lobes even for bias a, i.e., even when only the lowest
transverse mode propagates through the constriction.
This clearly implies that intermode scattering generates
higher modal components in the outgoing beam. Our cal-
culations, described below, support this and indicate that
conductance may remain approximately quantized [20]
(as is exhibited in our experiments).

Although electrodes inducing a QPC may be morpho-
logically smooth, the actual potential imposed upon the
electrons will not be. Calculations indicate that ionized
donors induce strong potential fluctuations [21]. We be-
lieve that close to pinch-off this, in general, results in
transport controlled by a single narrow region, i.e., a crit-
ical path [Fig. 4(a), left inset]l. We illustrate this by re-
cursive Green’s-function calculations [22] employing a
model potential [Fig. 4(a)l. Its narrowest (I) and transi-
tion (II1) regions are connected by a short zone (II)
where the channel widens abruptly and the potential be-
comes spatially nonadiabatic, ie., dW/dx>1/N(x),
where N(x)~kprW(x)/r and W(x) is the (transverse)
width at (longitudinal) position x [23]. Our calculations
yield 7(8), the angular profile of the emerging beam
(Fig. 4). Modal features are exhibited, at ey
~ = sin " "(an/kpWin), similar to those observed experi-
mentally. The transition region (III) not only determines
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FIG. 4. Calculated angular profile of the momentum distri-
bution emerging from a constriction. Curves a, b, and ¢ corre-
spond to 1, 2, and 3 injected modes, respectively. (a) 7(8), flux
per unit angle normalized by Akr/m™*. Left inset: Critical path
model of a quantum point contact. The depletion region
defining the effective boundaries of the constriction (dark shad-
ing) do not follow the smooth contours of the gates themselves
(light shading). Right inset: Model potential for the half of
the constriction contained within the dashed box of the left in-
set. The narrowest region (I) of width W; and potential V;
empties into the transition region (III) of fixed width
Wi =3.2Ar, length L =1.6Ar, and potential Vy;;=0. These are
connected by a nonadiabatic region (II), of fixed length, 1.6\,
with width and potential both linearly graded to match at re-
gions I and IIl. For curves a, b, and ¢, W;=(0.95, 1.3, and
1.6)Ar, respectively; while ¥;=(0.38, 0.04, and 0.00)EF, re-
spectively. (b) Modal decomposition of curve ¢ into even (dot-
ted) and odd (dashed) parity components. These are separately
conserved because of the mirror-plane symmetry of the poten-
tial. Calculated angular positions for transverse modes !
through 5 of region III are labeled. For curve c of panel (a),
the predominant *“shoulders” of the sum curve (solid) arise
from intermode scattering into the fourth and fifth modes. For
curve a of panel (a), however, we find that analogous shoulders
arise solely due to scattering from mode 1 — 3.

/2

the angular position of these features, but also their angu-
lar spread. We find that region III must be of length
L = \r for side lobes to emerge. For L <Ag, diffraction
broadens the modal components into a single peak [6,24].

Our observations show that conductance through a
QPC can remain approximately quantized even in the
presence of intermode scattering. This is consistent with
a picture where conductance is controlled by a critical
path which induces transitions in the emerging beam
while causing minimal backscattering.
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FIG. 1. Configuration for the T-measurement technique.
Four long gate electrodes at the surface of a 2DEG heterojunc-
tion (light shading) electrostatically isolate four rectangular 2D
reservoirs. From these, narrower channels lead to a central
junction region. Arrows show the direction of current flow for
B directed upward. Assignment of current (light shading) and
voltage (dark shading) contacts depends upon field orientation.
For clarity, external connections are shown only for reservoirs |
and 3. Left (right) insets: Electron micrograph of open
(pinched) junction regions. Gates separated by 400 nm define
the leads. Weak coupling is obtained in pinched cross junctions
by 150-nm-wide constrictions formed between two 50-nm-wide
gate fingers.
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FIG. 2. Data from a pinched cross junction at three gate
voltages labeled a, b, and ¢, at which ¥~ —0.90, —0.84, and
—0.76 V, respectively. The corresponding quantized conduc-
tance through the constrictions, as shown in panel (e) (inset),
indicate transmission of ~0.5, 1.5, and 2.5, respectively.
(a),(b) “Turning coefficients,” Tr and Ty, into the right and
left probes. Because of the device symmetry, Tg=T2(B)
~T4s(B) and To=Tw4(B)~Txu(B). (c) Hall resistance,
Ri =R\3,24(B), reconstituted from measured Tj; (solid curves).
Also shown is Ry measured conventionally at bias, ¢ (dashed).
Curves for a and ¢ are offset by +0.1 and —0.1, respectively.
Inset: A trajectory causing a peak in T at negative B. (d)
Forward transmission coefficient, Tr=T4(B), for electrons
propagating through both constrictions as depicted in Fig. 3 (in-
set). (e) Bend resistance, Rp,=R1243(B) reconstituted from
measured Tj;. Also shown is Rp directly measured at bias ¢
(dashed). Curves for a and c are offset by 0.05 and —0.05, re-
spectively.
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FIG. 3. Angular profile of the “beam™ emerging from one
constriction at biases a, b, and ¢. Tr is shown as a function of
angle of emission. At these biases the separation between
points contacts, d, are ~210, ~220, and ~270 nm, respective-
ly. The corresponding densities n; within the junction are
(~1.8, ~2.0, and ~2.2)x 10" cm 72, respectively. Right in-
set: Schematic representation of the semiclassical trajectory
determining Tr. Left inset: Polar representation of the emerg-
ing “beam™ for biases, a,b,c, employing a logarithmic radial
coordinate.
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FIG. 4. Calculated angular profile of the momentum distri-
bution emerging from a constriction. Curves a, b, and ¢ corre-
spond to 1, 2, and 3 injected modes, respectively. (a) T'(6), flux
per unit angle normalized by Akr/m*. Left inset: Critical path
model of a quantum point contact. The depletion region
defining the effective boundaries of the constriction (dark shad-
ing) do not follow the smooth contours of the gates themselves
(light shading). Right inset: Model potential for the half of
the constriction contained within the dashed box of the left in-
set. The narrowest region (I) of width W; and potential ¥;
empties into the transition region (II1) of fixed width
Wi =3.2AF, length L =1.6Af, and potential ¥y =0. These are
connected by a nonadiabatic region (II), of fixed length, 1.6AF,
with width and potential both linearly graded to match at re-
gions I and III. For curves a, b, and ¢, W;=(0.95, 1.3, and
1.6)Ar, respectively; while ¥;=(0.38, 0.04, and 0.00)EF, re-
spectively. (b) Modal decomposition of curve ¢ into even (dot-
ted) and odd (dashed) parity components. These are separately
conserved because of the mirror-plane symmetry of the poten-
tial. Calculated angular positions for transverse modes 1
through 5 of region 111 are labeled. For curve ¢ of panel (a),
the predominant “shoulders” of the sum curve (solid) arise
from intermode scattering into the fourth and fifth modes. For
curve a of panel (a), however, we find that analogous shoulders
arise solely due to scattering from mode 1 — 3.



